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Abstract

The quest for better splines for interactive curve design continues.
The Euler spiral spline has a long tradition and is very fine when bending
angles in the control polygon are small, but does not have a unique stable
solution when angles increase. A new analysis shows that the family of
“two parameter splines” can encompass a wide range of desirable behavior
based on properties of a 2-dimensional curvature map. In particular,
a periodic curvature map can yield robust splines, so a perturbation of
the control points changes the resulting curve only slightly. This paper
proposes a new spline that is robust over all inputs and preserves much
of the quality of the Euler spiral spline. This spline is but one instance
of a powerful design methodology that can produce splines optimizing for
specific desired properties, based on the two-parameter paradigm.

1 Introduction

Tools for interactive curve design still feel primitive, in spite of much work on
interpolating splines. Most professional curve design work, including font design,
is done using Bézier curves. Such curves are difficult to learn and require expert
operation to produce smooth results. Yet, they are expressive, and feel very
robust in interactive use, so they remain.

One of the oldest and most promising splines for interactive use is the Euler
spiral spline. With gentle inputs (no sharp bending angles), it produces very fine
results. But in interactive exploration, for example when sketching new ideas,
it’s not hard to put the spline into a state where loops suddenly flip direction.
Some implementations, fail to converge entirely, as Newton-based solvers are
not always well conditioned. The author’s own Spiro implementation, which
includes Euler spiral splines, occasionally produces curves resembling particle
accelerator tracks when the solver fails.

Recently Adobe has proposed a new spline [6] which solves the robustness
problem, but at the cost of lumpier results than the Euler spiral spline. The
main theme of this paper is to explore the obvious question of whether it is
somehow possible to combine the best features of both.
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1.1 What is the best spline?

It would be nice to design a perfect spline, but such a thing is not possible.
Instead, there are a number of properties of splines, and it is possible to optimize
for a subset. A fairly thorough listing of such properties is given in Chapter 2
of my thesis [3]. In some cases, these properties are in direct conflict with each
other.

Take roundness for example, the property that three points in a cyclic con-
figuration will form the unique circle through those three points (and, more
generally, the tendency of the spline to generate circular arcs). This seems like
one of the most basic and desirable properties of a spline, but a round spline sac-
rifices boundedness and robustness, as can be seen when the points pass through
a co-linear configuration; the circle goes through an infinite radius.

Even so, listing desirable properties provides scant help in actually designing
a spline. The space of all possible splines is vast – for any sequence of control
points, it produces a curve (an infinite-dimensional class of objects) constrained
only by the requirement to interpolate the control points. Is there some disci-
pline that can reduce this space to something tractable to reason about, pre-
serving the “good” splines? I argue below that the two parameter paradigm is
exactly such a discipline.

2 Two parameter splines

Chapter 4 of my thesis [3] proposed a framework of two parameter splines. In
this framework a family of curves to be instantiated at each segment between
to control points, parametrized by the tangent angles at each endpoint relative
to the chord. The segment is rotated and scaled in place so the endpoints of
the segment match the control points.

In this framework, the tangents at each control point are free parameters
(there is only one tangent for each control point, as G1 continuity is by con-
struction). The spline then solves these parameters for G2 continuity at each
control point.

Note that in this framework, the assignment of tangents depends only on
the curvature at the endpoint of each segment, which in turn is a function of
the two parameters. In this way, it decouples the shape of the segments from
the global behavior of the spline. Two curve families with the same curvature
map will be assigned the same tangents even if the interior shapes differ.

The loose coupling is emphasized even more if there is a four-parameter
curve family that can fit arbitrary tangent and curvature constraints at both
endpoints. With such a family, any curvature map can be accommodated.

The most familiar example of such a four-parameter family is a cubic Bézier.
Other examples include 4th order polynomial spirals (Spiro curves), or quintic
Bézier curves constrained to have nearly constant velocity.
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2.1 Existing 2-parameter splines

A number of existing splines into the literature fit into the 2-parameter frame-
work. In many cases, such splines are optimized for some property, providing
evidence for the proposition that by choosing a 2-parameter curve family based
on some property, the spline is globally optimized for this property.

Perhaps the most striking example is the Minimum Energy Curve (MEC).
Defining a 2-parameter curve family minimizing the bending energy of a thin
strip of flexible material passing through the endpoints with the given tangent
constraints, the resulting spline globally minimizes bending energy for all curves
passing through the control points.

The MEC has a number of drawbacks; most notably it tends to produce
curves of lower tension (longer length) than intuitively desirable, as bending
energy scales inversely with curve length. Of the approaches to increase tension,
perhaps the most effective is the Euler spiral spline, which fits segments of the
Euler spiral, or, equivalently, defines curve segments as having curvature linear
in arclength. The resulting splines are quite pleasing and have a number of
desirable properties, but also a significant drawback: at large bending angles,
there is not a unique solution, and a solver tends to “flip” suddenly from one
configuration to another, even for small perturbations of the control points.
This is likely a major reason Euler spliral splines have not been adopted more
widely (certainly as argued by Yan et al [6]).

The curvature map of the Euler spiral is shown in Figure 1. For this region of
the parameter space (angles between −π/2 and π/2), it is very smooth, almost
linear, and curvature is bounded.

Both MEC and Euler spiral splines are extensional, meaning that refining
a spline by placing an additional control point on the curve does not change
the spline. As my thesis explains, extensional 2-parameter splines are quite
restricted; all curves must be sections of a fixed generating curve.

Another spline that fits into the two-parameter framework is the circle spline
of Séquin et al [5]. In this spline, the curvature at an endpoint is fixed as that of
the unique circle passing through the tangent constraint at that endpoint and
intersecting the other endpoint. Circle splines have excellent locality but fails
extensionality quite dramatically (producing particularly lumpy results when
placing a new point near an inflection).

2.2 Analysis of κ-Curves in 2-parameter framework

With a bit of insight, it can be seen that the 2-parameter framework is general
enough to include the κ-Curve spline. In this analysis, the curve family consists
of two parabola segments, with the vertex of each parabola at the endpoint, and
the (absolute) curvature matched at the join point. This can be called a “bi-
parabola” in analogy to the “biarc” as used in the Ikarus system [2]. Solving for
G2 continuity at control points produces a single parabola segment that spans
both sides of each control point (there is a unique parabola of given tangent and
curvature at the vertex). This is true even if the interiors of segments in the

3



-2 -1.5 -1 -0.5  0  0.5  1  1.5  2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-20
-15
-10

-5
 0
 5

 10
 15
 20

Curvature as function of endpoint tangents, Euler spiral

θ0

θ1

-8
-6
-4
-2
 0
 2
 4
 6
 8

Figure 1: Curvature map of Euler spiral
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Figure 2: Construction of the bi-parabola from tangent constraints

curve family are not G2 continuous, as is the case for in the pseudo-inflectional
case where the endpoints have curvature of opposite sign.

The construction of a bi-parabola from tangent constraints is shown in Figure
2. For any pair of tangent constraints, there is a unique pair of parabolas with
vertex at the endpoints, going through the tangents, and meeting at a point of
equal curvature magnitude.

This spline has strikingly different properties than the others listed above.
It is bounded and is excellently robust. However, it deviates considerably from
roundness, and cannot form smooth inflections.

Looking at the curvature map of the bi-parabola curve family reveals a
number of fascinating properties. Most notably, the curvature map is periodic
in both endpoint tangents, both with period π. Near a tangent angle of π/2, the
curve forms a cusp of infinite curvature, and a reversal of direction. One way
or another, the curve has to reverse direction as the tangent goes through its
full rotation; with bounded curvature it must flip, so going smoothly through a
cusp seems the only other option.

The κ-Curve is not extensible, and deviation from roundness is high. It is not
monotone curvature, but preserves half of that property - no curvature maxima
are allowed, while curvature minima are not only allowed but mandatory in the
non-inflectional case.

2.3 Variations on the 2-parameter framework

Not all interesting splines fall squarely into the 2-parameter paradigm. This
section touches on a number of variations.

Perhaps one of the most relevant is the Hobby spline [1], which can be seen
as an approximation of the Euler spiral spline, particularly at small angles. It
is based on a 2-parameter family of curves (at least, ignorning the optional
tension parameter) but does not use G2 continuity to determine the endpoints.
Instead, it enforces continuity of “mock curvature,” a linear approximation of
curvature. It has the advantages of robustness and boundedness, at the cost of
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Figure 3: Curvature map of bi-parabola
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roundness and extensibility. It is used as the basis for curve design in Apple’s
iWork products.

Likewise, Ikarus [2] uses a 2-parameter family of curves (biarcs) but uses
another scheme to determine the tangent parameters.

A 4-parameter scheme produces splines with G4 continuity. Existing 4-
parameter splines include Minimum Variation Curvature [4] and a 4th order
polynomial spiral spline (Chapter 7 of my thesis).

3 A new spline

This paper proposes a new spline, fairly simple and easy to compute, that
combines the robustness of the κ-Curve spline with the fine qualities of the
Euler spiral spline when the control polygon has low bending angles. In fact, it
approximates Euler spiral fairly closely as angles decrease.

First, the formula for the spline is given. As in the Hobby spline, the two-
parameter curve family is a single cubic Bézier segment between each pair of
control points. The tangents are given by the parameters.

A cubic Bézier has two internal control points. Both must lie on the line
tangent to the corresponding endpoint, in order to enforce the given tangent
constraint. That leaves merely the length the control arm (the signed distance
from the endpoint to the control point along the tangent vector) as a free param-
eter. The new spline uses this simple function for the left control arm length,
as a function of θ0 and θ1; the right arm is symmetrical:

arm length = 5
12 (sin θa − 0.2 sin 3θa), where

θa = θ0 − 0.3 sin(2θ1 − 0.4 sin 2θ1)

Then, given this two-parameter curve, use a global solver to choose tangents
so that the curvature is matched on both sides of each control point. A Newton-
style solver as in my thesis will work, but requires a bit more care to make sure
that both direction and curvature match, given the possibility of reversals. It
also has to cope with curvature being unbounded, as opposed to the bounded
curvature of previously published two parameter splines.

For small angles, this spline is quite similar to the Hobby spline; in fact, both
can be seen as small-angle approximations to the Euler spiral. But as angles
increase, instead of less accurate and more “globby” approximations to the Euler
spiral shape, the length of the curve creases, and ultimately forms an infinite
curvature cusp; beyond that angle, the direction reverses. Its curvature map is
periodic (with period π in both tangent angles), and grossly similar in this way
to the bi-parabola, and so we expect the spline to have similar robustness as
the κ-Curvespline.

Because it approximates the Euler spiral, the new curve easily handles inflec-
tion points, with smooth variation of curvature on either side of the inflection.
The new spline has three important elements, which together make it have the
desired properties:
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Figure 4: Curvature map of new spline curve family

• It is a two-parameter spline with G2 continuity at the control points.

• The curvature map is periodic, with cusps formed at high angles.

• The curve family smoothly transitions through zero-curvature inflection
points.

The curvature map is shown in Figure 4.
Three families of curves are shown in the following figure, the Euler spiral in

red, the bi-parabola in green, and the new curve in blue. The horizontal axis is
the left tangent angle, and vertical is the right tangent angle, both in 15 degree
increments.

3.1 Endpoint tangents

In a cyclic configuration, enforcing G2 continuity across control points discharges
all parameters. However, in an open curve, the tangents at the endpoints are
unconstrained. These could be explicitly set (for example, in a graphical user
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Figure 5: Bi-parabola is green, Euler spiral is red, new curve is blue
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Figure 6: New spline on the left, κ-Curve on the right, spiral figure

interface), but failing that, the spline can set values that make the resulting
curve look natural.

It is easiest to set the tangent at the endpoint as a function of the tangent
(relative to chord) of the next control point. For example, setting it equal (as
in the Euler spiral) sets the terminal segments to circular arcs (as the Euler
spiral spline is round and thus generates circular arcs for symmetric tangent
constraints). The Minimum Energy Curve sets the endpoint tangents to solve
for zero curvature, as this minimizes total bending energy.

A π-periodic spline has an additional consideration, if it is to be robust –
when the next-to-terminal tangent is π/2, the terminal tangent should be 0.
This allows the curve to pass smoothly through π/2 to the other side without
a visible “jump” to the curve.

The κ-Curve spline sets the endpoint tangent to arctan 2 tan θ − θ, which
solves for a single parabola. We find that 0.5 sin 2θ produces nice results, a bit
more curvature than a parabola but less than a circular arc, approximating a
circular arc at low angles, and going to 0 when the opposing tangent is π/2 for
smoothness. Others may prefer a different formula, however.

3.2 Comparison with κ-Curve

Figures 6 and 7 show a comparison of the new spline with κ-Curve splines. The
first is a simple series of points arranged in a spiral, and shows that the new
spline is a much smoother interpolation. The κ-Curve shows the underlying
control polygon too strongly, with prominent curvature maxima.

Perhaps more worrying, Figure 7 shows additional pseudo-inflection points
added by κ-Curve for a straightforward “C” shape as might be commonly drawn
in a font. These curvature reversals are caused by the fact the bi-parabola is not
only incapable of forming a true inflection, it also does not have in its repertoire
a curve that approaches inflection, with moderate curvature on one end and
much lower curvature on the other. The Euler spiral very easily attains such a
curve, and the new spline has very similar behavior.

The new spline is not curvature monotonic in the general case. Neither
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Figure 7: New spline on the left, κ-Curve on the right, C shape

does it exactly respect the property (held by κ-Curve) of no internal curvature
maxima. However, deviation from this principle is small, and it is easy to
imagine a refined version, probably based on more than a single cubic Bézier
per segment, that does.

For inputs containing no large bending angles, the new spline produces re-
sults that approximate the Euler spiral, and for this limited class of inputs, the
spline approximately has its properties, including roundness, extensionality, and
monotone curvature. A refined version of the spline might exactly match the
Euler spiral within a certain parameter envelope.
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